
STARCOUNTER VMDBMS TECHNOLOGY



2STARCOUNTER VMDBMS TECHNOLOGY www.starcounter.com

Background

New generations of enterprise databases 
and other data engines will play an 
important part of our future. The 
fundamental principles of database 
technology have roots from the early 1970s. 
This is good and bad. The good thing is 
that database technology has become a 
science with solid mathematical grounds 
and is well researched. The bad thing is 
that many of the underlying assumptions 
are no longer true. 

The ongoing RAM revolution

Databases use computer memory to 
store things. Historically, memory has 
been divided into primary memory and 
secondary memory. Primary memory 
uses RAM. The main media for secondary 
memory over the last 40 years have 
been the disk drive. Accessing data in 
RAM is thousands of times faster than 
accessing data on disk. The main reason 
databases have traditionally focused on 
being efficient using secondary memory 
is often believed to be that disks are 
persistent, whereas RAM loses its memory 
when power is cut. But as disks can also 
fail, thus multiple redundant storage are 
needed anyway. The main reason why 

RAM is not the primary operating medium 
of databases has always been cost and 
availability. When the SQL database 
was born, one megabyte of RAM was 
over 160,000 US dollars. Now the same 
amount RAM is less than 1 cent. Securing 
data to redundant storage can be done 
efficiently, even using old mechanical disks 
(since sequential writes do not require 
the mechanical arm of the disk drive to 
move, multiple disks can be written to in 
parallel). Securing data to disk can be done 
faster than the rate of change in a RAM 
database. 

The first fix - big database caches

What do you do as a database vendor 
when RAM is suddenly cheap and a 64-
bit CPU can address it in terabytes? As 
you cannot reinvent and rewrite your 
product in an instant, the easiest option 
is to increase the size of your caches. 
Today, many traditional databases operate 
entirely in RAM if enough of it is available. 
While speed is much faster than if the RAM 
was not present, the entire architecture of 
the DBMS has not changed. The overhead 
that used to consume a fraction of the 
execution time when the cache was small 
now consumes almost all the time. 

PATENTED TECHNOLOGY



3STARCOUNTER VMDBMS TECHNOLOGY www.starcounter.com

The first generation RAM databases

While increasing the cache speeds things 
up, it will not match the speed of a true 
RAM database. If you adapt your database 
engine and assume that the data is always 
in RAM, you can make a database engine 
much faster than a traditional database. A 
RAM database is typically 10 times faster 
than a big-cache database.

The second generation RAM databases

The modern computer is nowadays a 
complex cluster of CPUs and memory. 
Taking advantage of the NUMA 
architectures where all memory is 
not equal can radically improve the 
performance of the first generation RAM 
databases. A CPU cache is a hundred 
times faster than normal RAM memory. 
Taking advantage of this and fully 
exploring the physical differences between 
RAM and Disk, a second generation RAM 

database can be 10 times faster than a first 
generation database and a hundred times 
faster than a big-cache database. 

The third generation RAM database

f a second generation RAM database 
can be a hundred to a thousand times 
faster than a traditional database, a new 
opportunity opens up. If the database is as 
fast as your object heap in your computer 
language, why would you move data 
between the database and the heap when 
you are operating on your objects, rows 
or tuples? When we measure database 
operations in nanoseconds instead of 
milliseconds, this is a valid question to ask.
One reason why you would like to move 
data from the database to the object 
heap of languages such as Java or C# is 
that you have a snapshot copy of the data. 
Nobody will see your changes until you 
decide to save them or serialize them. The 
downside is that query languages such as 



4STARCOUNTER VMDBMS TECHNOLOGY www.starcounter.com

SQL will not be able to sort or query your 
local changes together with the database 
data until they are saved, making coding 
on your business objects more difficult. 
But what if your computer language used 
the database as the heap? Transaction 
isolation would make the changes invisible 
to others until you want to make them 
public, this is the A and I in ACID atomicity 
and isolation. You keep the effect so that 
you can work on a transaction isolated 
from other transactions, but you gain the 
possibility to see your changes in your SQL 
queries. If you are adding a line item to a 
purchase order with existing items and 
have not yet saved your changes, you can 
still use SQL to sort all your rows, no matter 
if they are new and old. While in an atomic 
change, different threads of Java or C# 
object code would see the same object in 
different states at the same time. 
The need for moving data back and forth 
using serialization and deserialization 
would be redundant. The solution would 
be super easy for the developer, and 
much faster than the second generation 
RAM databases. Such a merger between 
the object heap of the virtual machine 
(VM) and the transactional control by the 
database management system (DBMS) we 
will refer to as a VMDBMS. 

The VMDBMS defined

The bottleneck apparent in second 
generation RAM databases is the 
transferring of data between database 
and application code. Because data 
is physically stored only in one place, 
the VMDBMS eliminates data transfers 
between application and the database as 
well as transformation between different 
data formats. This is possible because 
the application can access data in the 
database as fast as its internal temporary 
data. 

The data is never moved, the data resides 
in the database all the time, and the 
application directly accesses the data 
managed by the database management 
system. There is no copy whatsoever of the 
data local to the application. The “local” 
state of change in progress is no longer a 
product of a separate Java or C# object on 
the heap, but rather a consequence of the 
isolation and atomicity of the ACID engine 
managing the joint heap/database. As 
long as the log(s) are secured on disk, the 
database image can calmly be hibernated 
to disk in its own pace using asynchronous 
writes. Check points and recovery works 
the same way as in your legacy database. 



5STARCOUNTER VMDBMS TECHNOLOGY www.starcounter.com

Optimistic concurrency control does not 
compromise of concurrency control, but 
it benefits from the fact that if conflicts 
are unlikely, it is better to deal with them 
only if they occur. This is difficult to do 
if the code running the transaction is 
separate from the database engine. In 
the VMDBMs the code can declare a 
transaction scope (see above) and the 

transaction can automatically be restarted. 
In a third generation database, transaction 
running time is around a thousand times 
faster than using Java or C# on a remote 
database. This means that pessimistic 
concurrency control, which is based on 
locking and slows the database down even 
if there is no conflict can be avoided. 

DB App
DB App



6STARCOUNTER VMDBMS TECHNOLOGY www.starcounter.com

A bad performance spiral

The fuel of a space rocket is burned to 
produce thrust to accelerate mass of the 
rocket out of the gravitational force of the 
Earth. The more energy that is needed, 
the more fuel it takes, and the more 
fuel it takes, the more energy is needed. 
This means that you are put in a bad 
performance spiral. Transactions can be 
said to work in a similar way, the slower the 
transaction, the more you need to rely on 
pessimistic concurrency control (locking) 
as conflicts are more likely. The more the 
engine relies on pessimistic, the slower the 
transactions, etc.

A good performance spiral

If the database is fast enough, it can be 
used as a plug in heap manager, meaning 
that the data of the object is not copied 
to the memory of Java or C#. This means 
that transactions become much faster and 
reduces concurrency conflicts. Also, as the 
language and the DBMS can cooperate, 
the DBMS can automatically restart 
transactions, such as lock free optimistic 
concurrency schemes can be used. This in 
turn also means faster transactions. 
The faster the transaction, the less likely 
the conflict. The less likely the conflict, 

the more you can rely on optimistic 
concurrency control, meaning faster 
transactions. This puts you in a good self 
feeding performance spiral. 

VMDBMS queriess

A VMDBMS uses an enterprise database 
engine as a heap for languages such as 
Java and C#. As such, you can expect to be 
able to run queries on your objects. Your 
class is a table and your class instances 
are your rows. Inheritance work in the 
way you expect them to, as opposed 
to environments where the database is 
remote where your queries will have very 
little overhead and you can run millions 
of them per second on a single node. 
Also inheritance and path expressions 
(person.City.Country.Name) can be 
natively supported instead of having to 
be translated to a relational database 
resulting in poor performance. 

Lock free ACID concurrency

As the VM and DBMS are merged, the 
database transaction can automatically 
restart a transaction that is in conflict 
with another transaction. This is known as 
optimistic concurrency control. 



7STARCOUNTER VMDBMS TECHNOLOGY www.starcounter.com

A billion objects

There is much more to a VMDBMS than 
to provide persistent objects. The normal 
Java or C# heap lacks the capabilities 
to host large number of objects, already 
when they reach the millions, the memory 
manager and garbage collector begins 
to struggle. There is no transaction scope, 
so that changes are not atomic, and 
transactions are not isolated. Your threads 
need to rely on locking to be thread safe, 
a method that is significantly slower than 
optimistic concurrence control. One of the 
most important features however, is the 
possibility to query your database using 
query languages such as SQL, and that you 
have the safety features of checkpoints, or 
recoveries and other enterprise database 
features.

Where should the VMDBMS be used?

The availability of memory has increased 
dramatically. This can somewhat be offset 
by the increase in information volumes. 
However, when you compare the number 
of people, products, and sales transactions 
on the planet, and given the fact that the 
name ‘Bill’ still requires four character of 
storage, for many information systems the 

availability of cheap computer memory 
outweighs the growth in entities to store 
information. It is rather the real time 
and online exposure of the information 
that has changed dramatically in terms 
of structured storage. Unstructured 
information that is not transactional 
has grown much more rapidly with the 
birth of the internet than compared to 
the structured data involved in ACID 
transactions. The VMDBMS is ideal for 
applications such as ERP systems, online 
applications, finance, and other areas were 
structure and transactions are needed. 

Einstein’s general theory of relativity

Third generation RAM database 
entails a database access measured in 
nanoseconds. The implication is that 
physical distance between interacting 
nodes becomes very important. It takes 
the light three nanoseconds to travel one 
meter, and ss Einstein has showed, this is 
an absolute limit for electricity based or 
light based computers. By writing your 
software, be it an ERP system or a cloud 
service, the VMDBMS makes sure that the 
speed of light works in your favor. 


